Search results for "Islet of Langerhans"

showing 2 items of 2 documents

3d collagen hydrogel promotes in vitro langerhans islets vascularization through ad-mvfs angiogenic activity

2021

Adipose derived microvascular fragments (ad-MVFs) consist of effective vascularization units able to reassemble into efficient microvascular networks. Because of their content in stem cells and related angiogenic activity, ad-MVFs represent an interesting tool for applications in regenerative medicine. Here we show that gentle dissociation of rat adipose tissue provides a mixture of ad-MVFs with a length distribution ranging from 33–955 μm that are able to maintain their original morphology. The isolated units of ad-MVFs that resulted were able to activate transcriptional switching toward angiogenesis, forming tubes, branches, and entire capillary networks when cultured in 3D collagen type-…

0301 basic medicineMMP2QH301-705.5Angiogenesis0206 medical engineeringMedicine (miscellaneous)Adipose tissue3D coculture02 engineering and technologyRegenerative medicineGeneral Biochemistry Genetics and Molecular BiologyArticleExtracellular matrix03 medical and health sciencesmedicineBiology (General)Islet of LangerhansTransplantationChemistry020601 biomedical engineeringCell biologyTransplantationMicrovascular fragments030104 developmental biologymedicine.anatomical_structureBasal laminaAngiogenesisStem cell3D coculture; Angiogenesis; Islet of Langerhans; Microvascular fragments; Transplantation
researchProduct

Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich ataxia

2016

Frataxin (FXN) deficiency causes Friedreich's ataxia (FRDA), a multisystem disorder with neurological and non-neurological symptoms. FRDA pathophysiology combines developmental and degenerative processes of dorsal root ganglia (DRG), sensory nerves, dorsal columns and other central nervous structures. A dying-back mechanism has been proposed to explain the peripheral neuropathy and neuropathology. In addition, affected individuals have non-neuronal symptoms such as diabetes mellitus or glucose intolerance. To go further in the understanding of the pathogenic mechanisms of neuropathy and diabetes associated with the disease, we have investigated the humanized mouse YG8R model of FRDA. By bio…

0301 basic medicineNervous systemAgingPathologylcsh:MedicineMedicine (miscellaneous)Mice0302 clinical medicineImmunology and Microbiology (miscellaneous)Ganglia SpinalInsulin-Secreting CellsInsulin SecretionInsulinMuscle spindleDorsal root gangliaCellular SenescenceDiabetisbiologyMusclesDiabetesAnatomyMitochondria3. Good healthmedicine.anatomical_structureSistema nerviós simpàticDying-back neuropathyPeripheral nervous systemCell senescencemedicine.symptomOxidation-Reductionlcsh:RB1-214Research ArticleSenescencemedicine.medical_specialtyAtaxiaNeuroscience (miscellaneous)Friedreich’s ataxiaNeuropathologyGeneral Biochemistry Genetics and Molecular BiologyPàncreesMalalties del sistema nerviós03 medical and health sciencesPeripheral Nervous Systemlcsh:PathologymedicineAnimalsHumansPancreasIslet of Langerhanslcsh:R302Friedreich's ataxiaNervous system Diseasesmedicine.diseaseAxonsMice Inbred C57BLDisease Models Animal030104 developmental biologyPeripheral neuropathyFriedreich AtaxiaSympathetic nervous systemMutationHumanized mouseFrataxinbiology.proteinEnergy Metabolism030217 neurology & neurosurgeryDisease Models & Mechanisms
researchProduct